Pinch-n-Paste: Texture Transfer Gesture Interaction System with see-through HMD

Mami Mori, Tomohiro Mashita, Kiyoshi Kiyokawa, and Haruo Takemura
Osaka University
It is difficult to move, copy, and change an object’s texture in the real environment.
Umakatsu et al.’s Pinch-n-Paste\(^1\)

- Direct texture transfer interaction system in AR

Remaining Problems

- 3D Reconstruction
 - In-situ object reconstruction before interaction.

- Texture Transfer
 - Distortion of pasted texture

- Natural Hand Interaction
 - Inaccurate gesture recognition
 - Limited functions

- Display Device
 - Difference between user and camera viewpoints
Natural Hand Interaction

• Kinect sensor
• Skin color segmentation
• Hand approximation by spheres

• Collision detection-based gesture recognition
• Inability to recognize finger joint angles
• Misrecognition because of skin color variation
Display Device

- Using a monitor
- Difficulty in recognizing hand position in AR
Research Goal

- Add an authoring function with natural hand gesture
 - Accurate hand recognition
 - Implementation of gesture recognition
- Minimize visuo-proprioceptive sensory conflict
 - A see-through head mounted display (HMD)

Improvement Pinch-n-Paste
System Flow

Server

- Marker tracking
- Depth acquisition
- Model-based hand recognition
- Virtual hands creation
- Gesture recognition
- Physical simulation
- Communication

Client

- Communication
- Marker tracking
- Stereo rendering

Finger joint position, etc.

Server

Client

Kinect

HMD
Gesture Function

<table>
<thead>
<tr>
<th>Texture</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinch</td>
<td>Move</td>
</tr>
<tr>
<td>Paste</td>
<td>Copy</td>
</tr>
</tbody>
</table>
Gesture Recognition Method

- Gesture recognition with a hidden Markov model (HMM)
 - Finger joint angles as a feature vector

- Collision detection
 - Sphere-based virtual hands
Model-based Hand Recognition

- 3Gear Systems (http://www.threegear.com/)
 - Hand tracking system using a Kinect sensor
 - Estimates 3-dimensional positions of finger joints
Gestures

Normal

Pinch

Grab
Estimation with Hidden Markov Model

- Hidden Markov Model
 - Probability model suitable for recognizing a sequential pattern
- Recognize Pinch, Grab and Normal from hand posture
 - Feature vector: Finger joint angles
Learning and Estimation

• Machine learning with Baum-Welch algorithm
 • Initial value: Mean vector of each state, Variance-covariance matrix, State transition probability
 • Maximize likelihood

• Recognizing a current state with Viterbi algorithm
 • Input: Sequential data of feature vectors
 • Output: Plausible list of state
Using HMD

VUZIX WRAP 920AR +
(Field of View: 31°)
Demo
Experiments

- Exp A: Comparison between monitor and HMD
- Exp B: Gesture recognition performance
- Exp C: Subjective evaluation

- 8 Participants
 - 6 male
 - 2 female
 - Average age: 24
Exp A: Comparison between Monitor and HMD

- Target pointing task
- Performance: No significant difference
- Work load (NASA TLX[2]): No significant difference

\[\log_2 \left(\frac{\text{distance}}{\text{size}} + 1 \right) \]

\[\text{time} \]

Exp B: Gesture Recognition Performance

- **Recognition time**
 - Time taken from user’s showing a gesture to its recognition
 - Long recognition time due to slow system processing speed

- **Recognition accuracy**
 - Grab was more misrecognized

Recall(%)

- Normal: 97.6
- Pinch: 97.4
- Grab: 56.1

Precision(%)

- Normal: 95.3
- Pinch: 48.4
- Grab: 99.1

F(%)

- Normal: 96.4
- Pinch: 64.7
- Grab: 71.6
Exp C: Subjective Evaluation

• Participants experienced texture transfer, moving and copying an object for a few minutes
• Questionnaire: Rank out of 5
 • Low rating
 • Recognition accuracy (1.56)
 • Processing speed (1.78)
 • High rating
 • Ease of learning gestures (4.56)
 • Matching between functions and gestures (4.22)
Conclusion and Future work

• Conclusion
 • Implementation of natural hand gesture-based interactions
 • Minimization of visuo-proprioceptive sensory conflict by a see-through HMD

• Future work
 • Implementation of additional functions
 • Real time reconstruction for authoring real objects in AR